
The term ‘genotype–phenotype database’ covers a wide 
range of online and institutional implementations 
of systems used for recording and making available 
datasets that include genetic data (for example, DNA 
sequences, variants and genotypes), phenotype data 
(observable characteristics of an individual) and corre-
lations between the two. In biomedicine, such databases 
are principally focused on human genetic data and the 
resulting normal or disease phenotypes. Genotype– 
phenotype databases have one fundamental goal: to  
provide access to sufficient data and knowledge to enable 
the functional and pathogenic significance of genetic 
variants to be reliably established and documented1.

It is critical to distinguish disease-causing alleles 
from the abundance of neutral variants that co-occur 
in normal and disease-affected individuals. Incorrectly 
assigning pathogenicity to variants can lead to inaccurate 
genetic diagnoses or disease risk assessments in other 
individuals harbouring these variants. Achieving this 
distinction is challenging given that relatively few alleles 
have sufficiently large effect sizes to unambiguously stand 
out from background noise (that is, false positives due to 
measurement errors, hidden biases or multiple testing).

With the advent of next-generation sequencing 
(NGS), traditional single-gene analyses using Sanger 
sequencing are increasingly being superseded in 
both research and diagnostic settings as relationships 
between an individual’s genetic make-up (genotype) 
and disease (phenotype) can now be explored using 

gene panels2, whole-exome sequencing (WES)3, clinically 
focused WES4 and even whole-genome sequencing5. 
However, the power of genomics technologies can be a 
double-edged sword: although high-throughput meth-
ods help find novel disease genes and pathogenic vari-
ants, they also generate many misleading pathogenicity 
assignments. For instance, a typical WES in a rare dis-
ease medical context will uncover 30,000–100,000 vari-
ants relative to today’s reference genome6, of which only 
one or a few may be causative. Approximately 10,000 
of these variants will have putative molecular conse-
quences by inserting or deleting genic sequences, or 
by causing missense or nonsense amino acid changes 
or alterations of conserved splice site residues7,8. After 
eliminating all those that are common in the overall, 
healthy population or otherwise predicted to be non-
pathogenic, several hundred possible disease-causing 
candidates remain. Indeed, all ‘normal’ human genomes 
are estimated to contain ~100 loss-of-function alleles, 
with ~20 genes completely inactivated in each individ-
ual9. Thus, identifying true pathogenic variants among 
the many alleles that are putatively pathogenic remains 
a major challenge, and one that can best be tackled by 
maximizing the reliability, usefulness and availability 
of data and their annotations, which are recorded in 
genotype–phenotype databases.

In this Review, we consider the main objectives, 
state of progress, challenges and initiatives that pres-
ently characterize genotype–phenotype databases. We 
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Abstract | Genotype–phenotype databases provide information about genetic variation, its 
consequences and its mechanisms of action for research and health care purposes. Existing 
databases vary greatly in type, areas of focus and modes of operation. Despite ever larger 
and more intricate datasets — made possible by advances in DNA sequencing, omics 
methods and phenotyping technologies — steady progress is being made towards 
integrating these databases rather than using them as separate entities. The consequential 
shift in focus from single-gene variants towards large gene panels, exomes, whole genomes 
and myriad observable characteristics creates new challenges and opportunities in database 
design, interpretation of variant pathogenicity and modes of data representation and use.
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Genotype
In biology, genotype refers to 
the genetic makeup of an 
organism with reference to 
either a single nucleotide, a 
larger genetic locus or the 
entire genome. In the current 
context, genotype refers to a 
genetic sequence variant being 
assessed for potential causality 
of a disease, as well as its 
status as heterozygous, 
homozygous or hemizygous.

Phenotype
In biology, phenotype refers to 
the observable characteristics 
of an organism, but in 
medicine, the word is usually 
used to describe clinically 
relevant abnormalities, 
including signs, symptoms  
and abnormal findings of 
laboratory analyses, imaging 
studies, physiological 
examinations, as well as 
behavioural anomalies.

Variants
Genetic variants describe any 
deviations from a normal or 
reference sequence. For 
example, a substitution of one 
nucleotide for another at a 
certain chromosomal position, 
an insertion or deletion of  
one or more nucleotides, a 
chromosomal microdeletion 
encompassing several million 
nucleotides or a trisomy of an 
entire chromosome.

Pathogenicity
The tendency of a genetic 
variant in a person’s genome to 
produce disease. The term is 
most often used in the context 
of cancer or inherited disease, 
when a genetic variant has a 
substantial deleterious effect 
on the function of the gene 
product that leads to, or 
substantially contributes to, 
the development of disease.

Effect sizes
The percentages of genetic 
variance explained by a 
specific locus, ranging from less 
than 1% for many common 
traits up to 100% for some 
Mendelian diseases.

also identify important missing elements that need to 
be developed to maximize the field’s potential. Given 
the vastness of the topic, we have limited the focus to 
practical and technical issues and opportunities rather 
than ethical, legal and social matters, which cut across a 
broader swathe of biomedical practice.

Overview of the current database landscape
Given the immense size, complexity and variability of 
human genomes, the large range of possible normal and 
disease phenotypes, and the myriad settings in which 
one might wish to capture, organize and utilize human 
genotype–phenotype data, there is a need for many dif-
ferent types of genotype–phenotype databases. These 
databases are sometimes created using simple spread-
sheets or text file approaches, but the rapidly increas-
ing size and complexity of relevant datasets is generally 
being matched by progress in computing and database 
technologies.

Categorization of genotype–phenotype databases can 
be broadly based on many factors, such as the following: 
distinctions between health care and research settings; 
open versus controlled access or limited access systems; 
archival systems as opposed to those that handle real-
time content (including Big data projects); primary data 
through to aggregated forms of data; and the spectrum 
between centralized (single-site data depositories) and 
federated (multiple interconnected data sites) ways of 
bringing datasets together. Furthermore, databases can 
be classified on the basis of the type of stored data and 
the source of this information (for example, disease-
related mutations collected from the literature, primary 
through to fully processed and interpreted data from 
NGS-based investigations, and manually curated data 
combined from various sources). Evidently, there is 
substantial overlap and interplay between these differ-
ent forms of genotype–phenotype databases, and when 
and where each option might best be deployed. In this 
Review, we provide a simplified categorization on the 
basis of relative magnitude. TABLE 1 provides a selection 
of current databases organized according to scope and 
purpose.

Small-scale databases. Many genotype–phenotype data-
bases are small-scale efforts that support single research 
projects, specific disease areas, defined patient registries 
or specific sets of genes. Traditionally, diagnostic strate-
gies in human genetics have focused on single genes or 
small sets of genes, leading to variant discoveries that 
have typically been submitted to locus-specific muta-
tion databases (LSDBs; see TABLE 1 for examples). These 
databases aim to serve international communities of 
diagnosticians who specialize in the gene or genes in 
question by facilitating the interpretation of variants10.  
In other words, LSDBs contain sequence variation 
information about one or a few specific genes, usu-
ally pertinent to one or a few diseases. The aim is to 
collect complete and accurate lists of disease-related 
genetic variations and their phenotypic effects based 
on expert curation of published and unpublished data 
to produce these datasets. Increasingly, LSDBs for a 

number of related genes are grouped together, such as 
the resources listed in TABLE 1 for Fanconi anaemia (16 
genes), osteogenesis imperfecta (16 genes), amyotrophic 
lateral sclerosis (116 genes) or immunodeficiency (131 
genes). Other databases concentrate on genetic diseases 
of particular importance in a given country or ethnic 
group11; for example, the collection of ETHNOS data-
bases. The Leiden Open Variation Database12 and the 
Universal Mutation Database13 software platforms are 
widely used for LSDB creation, as they were designed 
from the outset to be generic solutions for this domain.

The technical proficiency and data quality of small-
scale, public databases varies. Beyond the inbuilt proper-
ties of the adopted database software they are created from, 
these databases tend to be tailored to local preferences 
and may use few standards in their design and operation, 
with little or no integration with other systems or options 
for bulk download. As such, despite contributing to  
the global digital collection of data relating genotypes 
to phenotypes, such databases tend to each be visited by 
only a limited number of users and may not be secured 
or integrated long-term due to sustainability challenges. 
This piecemeal arrangement of mixed quality datasets 
obviously limits the scope for good data exploitation; 
however, even greater amounts of poorly exploited 
data reside in non-public genotype–phenotype data-
bases that support research and diagnostic laboratories  
in non-profit or commercial environments.

Large-scale databases. Numerous larger genotype– 
phenotype databases — primarily ‘central’ databases 
— have been created; a selection of the most notable of 
these is summarized in TABLE 1. Some larger genotype–
phenotype databases seek to provide comprehensive 
coverage of germline variations in single genes across the 
majority of known Mendelian diseases. Principal exam-
ples include the commercial Human Gene Mutation 
Database, which obtains its core data from publications, 
and the public domain-based ClinVar, which has vari-
ous input sources and links out to variants, diseases and 
other metadata. Other large databases have been created 
to manage genome-wide genetic data from NGS studies. 
For example, DECIPHER provides summary informa-
tion derived from genomic screening investigations such 
as Array-CGH and exome sequencing, together with phe-
notypic descriptions of affected individuals. Other data-
bases cover genome-wide association studies (GWASs) 
or somatic variations in cancer. Some of these reposito-
ries allow users to download not only information about 
individual variants but also files containing primary 
information such as whole-exome or whole-genome 
DNA sequences. For instance, the Cancer Genomics 
Hub currently contains almost two petabytes of  
downloadable data.

A special subset of databases could be called ‘integra-
tion’ databases because they unify other resources. Their 
objective is to bring together (via direct data compilation, 
hotlinks to remote data or virtualization approaches14) 
the content from various smaller databases and/or inter-
related specialized databases to provide a single site with 
a more complete picture of a particular topic.
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Table 1 | A selection of databases with a focus on genotype–phenotype relationships in human medicine*

Database Scope and scale Standards Data 
entry

Data access 
policies

Refs

Gene variation database (LSDB or MDB)

ClinVar • Genetic variants and phenotypes
• 125,520 variants

HGVS, HPO, MeSH, 
OMIM, RefSeq, SO

Curators 
and users

P 63

Human Gene Mutation 
Database (HGMD)

• Genetic variants and phenotypes
• 163,610 variants

HGNC, HGVS Curators Com, P 96

Leiden Open Variation 
Databases (LOVD)

• Genetic variants and phenotypes
• 3,334,104 variants (2,400,084 unique) in 248,807 

individuals in 86 LOVD installations

HGVS, Mutalyzer Curators P, Cs 12

Universal Mutation 
Database (UMD)

• Genetic variants and phenotypes
• 90,383 variants in 40 databases

HGVS Curators P, Cs 13

Amyotrophic Lateral 
Sclerosis Online genetics 
Database (ALSoD)

• LSDB
• 116 genes associated with amyotrophic lateral sclerosis
• 569 variations

HGNC Curators P 97

CFTR2 • Cystic fibrosis LSDB
• 88,000 patients

HGNC, HGVS Curators P 23

Fanconi Anemia 
Mutation Database

• LSDB
• 16 genes associated with Fanconi anaemia–BRCA pathway
• ~3,000 variations

HGNC, HGVS, LRG Curators P 98

Osteogenesis 
Imperfecta Variant 
Database

• LSDB
• 16 genes associated with osteogenesis imperfecta
• ~1,500 variations

HGNC, HGVS, LRG Curators P 99

IDbases • LSDB
• 131 genes associated with immunodeficiency
• Data for 7,292 patients

HGNC, HGVS, VariO Curators P 100

MITOMAP • LSDB
• Mitochondrial DNA variation
• 1,746 variants

Curators P 101

FINDbase • Aggregated information on national and ethnic variation 
frequencies

• ~100 NEMDBs

HGNC, HGVS Curators P 102

Array-CGH, WES, WGS (rare disease)

DECIPHER • Genetic and phenotypic data
• Diagnostics and discovery.
• 42,815 cases

HGVS, HGNC, HPO Users P, Cs, RG, MM 38, 
103

PhenomeCentral • Genetic and phenotypic data
• Genomic “matchmaking”
• 600 cases

HPO, VCF Users MM 65

PhenoDB • Genetic and phenotypic data
• Diagnostics and discovery.
• 3,300 cases

EoM, HPO, OMIM, 
PhenoDB

Users MM 104

GeneMatcher • Gene matching (discovery)
• 668 genes

HGNC, Ensembl, 
Entrez Gene, OMIM

Users MM 105

Mendelian and other rare disease knowledge bases

Online Mendelian 
Inheritance in Man 
(OMIM)

• Knowledge base
• 22,644 entries (genes or diseases)

HGNC, HPO, ICD, 
OMIM, PhenoDB, 
SNoMED, UMLS

Curators Ac 106

Orphanet • Knowledge base
• 5,833 disease entries, copious data on other rare disease 

topics

HGNC, ICD, MedDRA, 
MeSH, OMIM, UMLS, 
Uniprot

Curators Ac 73

Monarch Initiative 
knowledge base

• Human and model organism genetics and phenotypes
• 36K diseases, 33K phenotypes, 500K genotypes, 30K genes, 

2M curated phenotype associations, >100 species

HPO, MPO Curators P 107
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There are also generalist knowledge bases, of which 
two prominent examples for human genetics and rare 
disease would be Online Mendelian Inheritance in 
Man (OMIM) and Orphanet, respectively. These types 
of database invest substantial manual effort to collect, 
curate, harmonize and inter-relate large amounts of 
primary information to create broad and powerful 
compilations of knowledge about disease genes and 
related clinical or research topics.

Central and integration databases tend to make 
greater use of standards (in some cases also precipi-
tating the creation and adoption of standards, such as 
Locus Reference Genomic sequences15,16), provide web 
services, and offer powerful data search, display and 
download options. As such, they can and often do have 
extensive inter-database connections, and may repli-
cate at least a minimal level of their content (sufficient 
for crosslinking) between one another. Rarely are they 

Table 1 (cont.) | A selection of databases with a focus on genotype–phenotype relationships in human medicine*

Database Scope and scale Standards Data 
entry

Data access 
policies

Refs

Cancer genomics and variations

Cancer Genomics Hub • Genetic and phenotypic data repository
• 82,140 files (1870 Tb)

Sequence Read 
Archive Metadata 
XML

NCI 
projects, 
curators

P, CA 108

Catalogue Of Somatic 
Mutations In Cancer 
(COSMIC)

• Variation and genetic and phenotypic data
• 2,139,424 unique variants

HGNC, CCDS Curators P 109

DriverDB • Variation and genetic/phenotypic data
• 6,079 datasets

HGNC Curators P 110

Genotype–phenotype information for GWAS and other studies

Database of Genotypes 
and Phenotypes (dbGAP)

• Genetic and phenotypic data
• 508 studies

dbGAP, XML Curators 
(focus on 
NIH-funded 
projects)

P, CA 43

European Variation 
Archive (EVA)

• All types of genetic variants from any species
• ~40 studies, representing 35 species, describing  

~400 million unique alleles from more than 150,000 samples

VCF, dbSNP Users, 
curators

P

European Genome–
Phenome Archive (EGA)

• Genetic and phenotypic data
• 1,555 datasets

VCF, FASTQ, BAM, 
EFO

Users P, CA 42

GWAS Catalog • Genetic and phenotypic data
• 18,697 associations

dbSNP, HGNC Curators P 111

GWAS Central • Genetic and phenotypic data
• >75 million associations

dbSNP, HGNC, 
HPO, MeSH

Curators P, CA 47

GWASdb • Genetic and phenotypic data
• 272,918 associations

dbSNP, DO, HPO Curators P 112

Human Genome 
Variation Database

• Genetic and phenotypic data
• ~100 datasets in 6 integrated databases

HGNC, HGVS, 
dbSNP

Users P, CA 113

Pharmacogenomics

PharmacoGenomics 
Database (PharmGKB)

• Pharmacogenomics knowledge resource
• Extensive data on variants, pathways, dosing, clinical 

annotations, drug labels

dbSNP, HGNC, 
MeSH, SNoMED, 
UMLS

Curators, 
NLP

Ac 114

Ac, open to academics, but commercial entities require license; CA, controlled access; CCDS, Consensus CDS; CGH, comparative genome hybridization; Com, 
commercial; Cs, restricted to consortium members; dbSNP, Database of Single Nucleotide Polymorphism; DO, Disease Ontology87; EFO, Experimental Factor 
Ontology; EoM, Elements of Morphology115; GWAS, genome-wide association study; HGNC, HUGO Gene Nomenclature Committee; HGVS, Human Genome 
Variation Society; HPO, Human Phenotype Ontology; ICD, International Classification of Diseases; LRG, Locus Reference Genomic; LSDB, Locus-specific database; 
MDB, variation (mutation) database; MedDRA, Medical Dictionary for Regulatory Activities; MeSH, Medical Subject Headings; MM, MatchMaking (finding similar 
patients); MPO, Mammalian Phenotype Ontology; NCI, National Cancer Institute; NEMDB, national and ethnic variation (mutation) databases; NIH, National 
Institutes of Health; OMIM, Online Mendelian Inheritance in Man; P, public; RG, access restricted to a specific research group; SNoMED, Systematized Nomenclature 
of Medical Terms; SO, Sequence Ontology; UMLS, Unified Medical Language System; VariO, Variation Ontology; VCF, Variant Call Format; WES, whole-exome 
sequencing; WGS, whole-genome sequencing; XML, Extensible Markup Language. *Further details are available at the websites of the databases. Owing to space 
constraints, many important databases had to be omitted. Databases are divided into major categories, but it is recognized that many of the databases can  
be considered to belong to multiple categories. Scope refers to the major focus of the database. If applicable, information is given about the number of items 
currently contained in the database. Standards indicates the major terminologies or ontologies that the database uses to annotate and organize data. Data entry 
indicates whether the data in the database are primarily entered by curators or by users of the database, and if natural language processing (NLP) is employed to 
gather data. Note that for data access policies, databases with more than one access level tend to provide more information as data access becomes stricter.
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Multiple testing
The process of using 
bioinformatics analysis to 
assess potential pathogenicity 
of a variant is often formulated 
as a statistical hypothesis test. 
As tens of thousands of such 
tests may be performed  
in the analysis of diagnostic 
next-generation sequencing 
data, adjustments of the  
P values resulting from 
assessments of individual 
variations are required to avoid 
numerous false positive results, 
a procedure known as multiple 
testing correction.

Whole-exome sequencing
(WES). A sequencing technique 
that seeks to selectively enrich 
and assay only the sequences 
belonging to the ~1.5% of the 
human genome consisting of 
the exons of protein-coding 
genes (called the exome) 
because the majority of 
causative variations identified 
in Mendelian diseases to date 
have been located in or very 
close to these exons.

Big data
This term is used to describe 
collections of data that are 
characterized by features such 
as being large in size, complex 
and heterogeneous in type, 
rapidly produced or frequently 
changing, and of uncertain 
veracity, such that analysis 
requires high-performance 
computing resources and 
sophisticated algorithms.  
In biomedicine, especially 
high-throughput omics data 
such as whole-genome 
sequencing, as well as ever 
increasing amounts of clinical 
data available in electronic 
health care records, are  
often regarded as big data.

Standards
In the present context, a formal 
set of specifications about the 
format and contents of data 
records of variants or diseases 
that are to be exchanged 
between databases.

Metadata
Metadata, literally ‘data about 
data’, refers to information that 
accompanies other data and 
explains their context or 
provenance.

commercial systems and, similar to their smaller coun-
terparts, rely almost exclusively on academic funding 
for their survival and growth.

Key challenges and common goals
Expanding datasets. The rapidly increasing abundance 
of genetic and phenotypic data, driven by the transi-
tion from single-gene testing to NGS gene panel, exome 
and genome sequencing, has resulted in a concomitant 
increase in the size, scope and sophistication of geno-
type–phenotype databases. This growth produces two 
further consequences. First, analysts who previously spe-
cialized in one or a few genes will now be confronted by 
variants from thousands of genes. In other words, only 
one or a few genes used to be tested in genetic diagnos-
tics (for example, NF1 in a patient with possible neurofi-
bromatosis type 1) and any observed likely disruptive 
variant was taken as sufficient evidence to confirm the 
diagnosis. Now, with NGS, far more evidence from 
diverse data sources must be considered before drawing 
any diagnostic conclusions. Thus, practitioners will need 
to make much greater use of public genotype–phenotype  
databases than ever before. Second, the data sources 
used must be of extremely high quality to minimize the 
risk of erroneous analyses. Currently, gene- and disease-
specific databases only sometimes meet this requirement 
because they vary widely in comprehensiveness, depth 
of clinical data, coverage of published and unpublished 
pathogenic variants, and may contain a substantial pro-
portion of erroneous information17. For example, up to 
27% of literature-cited disease-causing variants in some 
databases are incorrect or incomplete, being merely 
either common polymorphisms or sequencing errors, 
or lacking good evidence of pathogenicity18.

Assigning pathogenicity. For all but the most highly 
studied variants in a relatively small list of well- 
understood disease genes, uncertainty exists as to whether 
they have a causative role in a particular disease. For 
instance, a recent study identified tripartite motif contain-
ing 63, E3 ubiquitin protein ligase (TRIM63; also known 
as MURF1) as a novel disease gene for hypertrophic car-
diomyopathy on the basis of two missense variants and 
one deletion allele detected in 302 patients but in none 
of the 229 control individuals19. However, other studies 
reported a nonsense variation (p.Q247*) in TRIM63 in 
individuals with no signs of cardiomyopathy20. Deletion 
of Murf1 in mice did not result in heart pathology, but 
knocking out both Murf1 and Murf2 led to extreme 
cardiac hypertrophy21. Hence, it remains uncertain 
whether TRIM63 is a Mendelian disease gene or whether 
it merely contributes to hypertrophic cardiomyopathy  
in conjunction with a variant in another gene.

As the above example illustrates, the task of assigning 
pathogenicity to a genetic variant is far from straightfor-
ward, primarily because establishing causality involves 
having to apply differential and often subjective weight-
ing to multiple lines of evidence, and making choices 
over which analytical tools to use. Common practice in 
research and clinical diagnostics seeks to address this 
challenge by reducing pathogenicity down to a simple 

classification system with just a few categories (such as 
‘definitely pathogenic’, ‘probably pathogenic’, ‘uncertain’, 
‘probably not pathogenic or of little clinical signifi-
cance’, ‘not pathogenic or of no clinical significance’)22. 
However, the actual concept of pathogenicity underlying 
these classifications is often not well defined. Ideally, the 
meaning of pathogenicity would be not only universally 
understood and consistently used but also broken down 
and quantified at the level of its underlying components 
— penetrance, expressivity and the precise functional or 
clinical phenotype under consideration — with each 
component being given in the context of a certain age 
range, gender, population and environment. However, 
elaborating this type of stratified medicine approach for 
each and every subgroup of interest (which could be a 
single person or thousands of individuals) will require 
an extensive amount of high-quality observational data 
to establish and interpret signal patterns reliably. In 
the past, this scale and quality of data simply has not 
existed for most disorders, and still rarely does today. A 
notable exception is the CFTR2 database23, which con-
tains data on more than 88,000 patients, thus enabling 
this database to provide information on sweat chloride, 
lung function, pancreatic status and Pseudomonas spp. 
infection rates associated with many cystic fibrosis trans-
membrane conductance regulator (CFTR) mutations. As 
such, genotype–phenotype databases previously needed 
only simple computing technologies, including very 
basic data fields relating to pathogenicity, and did not 
capture the process of pathogenicity interpretation or the 
employed evidence base. Going forward, this approach 
will have to change, especially if we wish to deliver truly 
personalized medicine, which will require mechanistic in 
addition to probabilistic modelling, and hence even more 
sophisticated sources of input information and tools for 
the recording of results.

Current progress and trends
Database types and arrangements. The ideal number, 
type and arrangement of genotype–phenotype databases 
that will ultimately be required cannot easily be pre-
dicted. Instead, we can merely observe the current real-
ity and note some common themes and trends (FIG. 1). 
Factors such as the need for recognition and reward for 
creators of data and databases, valid limitations on data 
sharing, a desire to encourage widespread innovation, 
and the value of having domain-specific experts close 
to data curation and management processes, all argue 
in favour of federated databases. A counter argument 
would be that it is both more cost-efficient and practical 
in terms of standards-based inter-system compatibility 
to only build a few centralized repositories. In practice, 
real-world primary databases and data generation pro-
jects are deciding for themselves what subsets of their 
content are to be submitted into centralized deposito-
ries, whereas those centralized databases are making 
themselves more attractive to data depositors by offer-
ing incentives such as private data hosting services, 
managing data access requests, archiving, deeper and 
better data analysis, and full accreditation with links 
back to the sources on all displays of the submitted data. 
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Array-CGH
Array-comparative genomic 
hybridization (CGH) enables 
the gain or loss of genetic 
material to be detected in  
the range of as little as 40 
kilobases up to entire 
chromosomes. Array-CGH has 
become a standard diagnostic 
tool for the identification of 
copy number variants.

Web services
Databases, data processing  
or analytical functions that  
can be accessed by another 
computer program over  
the worldwide web.

Penetrance
The proportion of persons who 
carry a pathogenic germline 
variation and also show signs 
of a disease irrespective of the 
clinical severity.

Expressivity
The degree of clinical 
expression and severity of a 
disease in individuals who have 
inherited a given germline 
variation.

Stratified medicine
An approach to patient care 
that subdivides patients into 
groups that are defined on  
the basis of expected risk of 
developing disease or the 
expected response to a certain 
treatment.

Personalized medicine
This concept is synonymous 
with individualized medicine, 
and is used in varying ways to 
convey the idea of health or 
medical care being in some 
way tailored and optimized for 
a person. This typically means 
going beyond shaping care for 
groups of similar patients to 
the ultimate of uniquely 
customizing interventions for 
each separate individual.

Probabilistic modelling
A class of computational 
algorithms that describe data 
observed from a system in a 
way that takes uncertainty and 
noise associated with the 
model into account. It is one 
method for making predictions 
about disease onset or severity 
on the basis of genetic and 
other data.

Some recent initiatives, such as the Collaborative Cancer 
Cloud even seek to move all of the above onto the cloud, 
and hence the question of where a database physically 
resides, or debates about where one resource starts and 
another federated one ends, are becoming increasingly 
meaningless.

Data linking and reporting. Despite the impressive 
sophistication of central databases, there is often no 
direct connection between these resources and the far 
larger number of smaller databases or non-public data-
sets. Similarly, the process of reporting genotype–phe-
notype relationships in traditional publications does 
not normally involve the transfer of those findings into 
any database, and so curators must subsequently spend 
time extracting and integrating this information into 
structured repositories. These disconnects make it dif-
ficult for any database to present a complete view, even 
though the technical solutions to this issue (for exam-
ple, web services, data linking and core data transfer) 
are obvious and relatively simple to implement. Clearly, 
other factors such as funding, competences, incentives, 
legal restrictions and informed consent, are holding up 
progress in this area. Arguably, journals and funding 
agencies are best placed to address these issues, as both 
can direct resources to getting pipelines built for data 
submission, and apply pressures to make researchers use 

them. Some journals have now begun to move in this 
direction (notably Human Mutation24, which requires 
published variant data to be submitted to a database, 
and more recently CSH Molecular Case Studies for  
phenotypic abnormalities) while funding agencies are 
beginning to formulate rules and requirements that 
will work best if supported by real sanctions (such as 
the National Institutes of Health Data Sharing Policy). 
However, the pace of change must be managed carefully, 
as it would make no sense to insist on digital deposi-
tion of data if the necessary journal procedures and ade-
quately governed databases are not first established and 
placed on a sustainable footing.

The above considerations raise the question of how 
and when genotype–phenotype data are, could or should 
be entered into an online database. Given the diversity of 
methods and sources for data generation, the many ethi-
cal, legal and other restrictions on the use of such data, 
and the array of databases, registries and biobanks that 
might want to receive the data, there is no straightfor-
ward answer. The following factors therefore become key 
considerations: whether the data generator and owner 
have the time and ability to submit to a database; the 
conditional balance of risks and rewards for doing so;  
the perceived strengths, longevity and convenience of the 
available databases; and the quality and utility of the data 
compared to the expectations of those databases. The 
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Figure 1 | Emerging landscape of genotype–phenotype databases. Based on the types of databases now in existence, 
the field can be described as having a three-level architecture: source databases (DBs), ‘integration’ databases and central 
databases. Source databases hold highly sensitive and private data of a specialized nature, whereas integration databases 
(knowledge portals) aggregate some depth of content from source databases and other resources to support specific 
disease areas or regional and project-based activities. Top-level central databases sit above the source and integration 
databases and provide a (semi-) comprehensive overview and universal services. The orange, blue and green database 
sections shown in this diagram represent different types or categories of data. The optimum number of each type of 
database, and the degree of federation and communication across and between the layers, will presumably find its own 
optimum as the field further evolves. This process could be accelerated by creating interoperability methods and 
standards, consensus principles by which data can be linked, discovered or shared across databases, robust consent  
and legal frameworks under which they interoperate, and models for sustainable funding.
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Federation
A software strategy that allows 
data from disparate databases 
and other sources to be 
aggregated ad hoc as a virtual 
database that can be used  
for analysis. In the present 
context, federation involves 
connecting genotype–
phenotype databases across 
networks to allow combined 
searches for information about 
variations or diseases.

Cloud
Remote servers that are 
accessed via the Internet  
and provide data storage and 
analysis resources.

Informed consent
An agreement on the part of a 
patient to take part in a clinical 
study and allow the results of 
the study to be used in some 
way, such as for additional 
research or health care 
activities or for sharing with 
others in a publication or 
database. Consent can only 
reasonably be given after the 
subject is informed and given 
the opportunity to discuss the 
purpose of the research  
and any potential harms and 
benefits.

Biobanks
Collections of biological (often 
medically relevant) specimens 
such as blood, saliva or  
tissue, associated with data 
annotations that describe  
the subjects from whom the 
specimens were obtained, such 
as age, gender, environmental 
exposures, phenotypic 
features, molecular test results 
or clinical diagnosis. Biobanks 
are used by researchers to 
obtain sets of data and 
specimens from subjects  
with the same diagnosis  
or with similar characteristics 
to undertake research 
investigations.

Registry
A registry comprises a 
collection of information about 
individuals affected by a 
specific disease or who share 
other similarities. Many 
registries collect information 
about individuals over time or 
are used to track information 
regarding the response of 
patients to treatments. A 
registry may, but does not 
necessarily, include genetic 
information.

complex equations that these factors raise are slowly and 
steadily being solved, such that more and better data are 
being organized and entered into databases each year; 
however, many further improvements are needed. As a 
workaround or parallel track, there has been consider-
able interest in recording and making available geno-
type–phenotype data collected directly from patients; for 
example, the PEER platform of the Genetic Alliance25, 
PatientsLikeMe26 and GenomeConnect27. Such an 
approach fits well with the global move towards patient 
empowerment and putting individuals at the centre of 
their own health care and health preservation28,29.

Improving phenotypic information and pathogenic-
ity evidence. The data that have so far been gath-
ered into the types of databases listed in TABLE 1 have 
strengths and weaknesses. The genotype (that is, DNA 
sequence-related) content is already large in scale and 
growing rapidly, primarily as a result of the power of 
NGS technologies deployed for the generation of ref-
erence datasets (for example, 1000 genomes30 and the 
Exome Variant Server of the NHLBI Exome Sequencing 
Project31) and owing to large studies of the genetics of 
disease (for example, the Personal Genome Project32, 
the International Cancer Genome Consortium33 and 
The Cancer Genome Atlas34), for which data access is 
often open or relatively straightforward to obtain. By 
contrast, the phenotype dimension is lagging behind in 
terms of the scale and the granularity of the information 
collected, and its degree of standardization (and hence 
its wider utility). Many older genotype–phenotype data-
bases contain and provide only limited phenotype infor-
mation, perhaps just the headline disease name at best. 
Critically, especially with genome-wide variation data, 
a careful clinical analysis of phenotype data is an essen-
tial component of genomic analysis35. For instance, less 
than 10% of published variants in genes associated with 
medically actionable genetic conditions were judged to 
be sufficiently supported by the medical literature to be 
reported as an incidental finding in adults otherwise 
not known to have the conditions in question36. This 
finding highlights the fact that, when considering vari-
ants identified by WES or whole-genome sequencing 
in diagnostic settings, practitioners should not rely on 
previously published claims that variants are putatively 
disease-causing, because such pathogenicity assertions 
are often erroneous. More attention to phenotypic infor-
mation and other metadata in variant databases would 
help to improve the accuracy of clinical interpretation 
of WES data. Fortunately, more recent initiatives (for 
example, CARE4RARE37, DECIPHER38, the GEnomes 
Management Application39, the PheWAS Catalog40 and 
the Kaiser Permanente Research Program on Genes, 
Environment and Health41) are emphasizing the need 
for phenotype content to be as rich as the genotype data. 
This move is also true of platforms that manage the con-
trolled access of detailed research studies (for example, 
the European Genome-Phenome Archive42 and the  
database of Genotypes and Phenotypes43). Perhaps  
the disparity between the amount and quality of geno-
type and phenotype data reflects the degree of practical, 

financial, ethical, legal and organizational challenges that 
must be overcome to produce good phenotypic data on 
large numbers of individuals. If so, an unfortunate corol-
lary might be that researchers that do take on this effort 
may subsequently be less willing or able to share their 
data widely. One way to minimize this problem would 
be for health care data (for example, clinical phenotypes, 
patient histories, medications and outcomes) to be pro-
cessed and managed routinely in ways that make them 
more available for feeding into research programmes44.

In addition to genotype and phenotype data, data-
bases are in a few cases beginning to include the actual 
evidence used to infer variant pathogenicity, as well as 
the methods used to process and interpret such evi-
dence. Because of the diversity of this evidence, its cap-
ture would ideally be facilitated by the use of innately 
flexible database technologies (such as i2b2 (Informatics 
for Integrating Biology and the Bedside)45 and 
Observ-OM46), which are not constrained to holding 
only certain types of data structured in a specific way.

Alternative modes of data provision. Databases seek to 
gather and hold data, and enable users to search for and 
thereby access data of interest to them. This goal is sim-
ple to achieve for a solitary database that handles a single 
type of data record, but far from straightforward if the 
ultimate goal is a single genotype–phenotype databas-
ing ‘universe’; that is, a comprehensive system in which 
all information is interconnected, and data quality and 
data duplicates are fully apparent. Most data are large 
and complex, widely dispersed in different repositories 
or projects of different designs, with privacy concerns 
imposing limitations and uncertainties over which users 
can access which particular records in which situations. 
These challenges mean that progress towards completely 
unifying and optimally sharing individual-level, per-
sonal data (which includes substantial portions of one’s 
genome sequence), will need to proceed carefully, with 
many different strategies being debated and applied in 
various settings.

As a reaction to these challenges, complementary 
strategies are being explored that can make data more 
immediately useful (FIG. 2). One approach involves con-
verting data to other representations, and enhancing it 
in various ways, to counter the risk of subject identifica-
tion. An obvious example would be the aggregation of 
individual-level genotype data into variation frequency 
information, split by population group and/or disease. 
More refined approaches would entail the creation and 
use of detailed metadata, and the use of graphical displays 
of signals and patterns in complex datasets (for example, 
GWAS Central47). Such approaches are a key facet of inte-
gration databases and disease-area-specific knowledge 
portals (FIG. 1), enabling them to combine LSDB, registry, 
biobank, research and diagnostics information, across 
species, and with functionalities serving many different 
audiences across research, health care and beyond.

Another approach is to enable many dispersed col-
lections of data to be jointly exploited. Technically 
sophisticated ways to achieve this involve setting up 
mechanisms (for example, DataSHIELD48) that enable 
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remote pooled data analysis, thereby eliminating the 
need to share data directly. Related approaches that do 
entail direct sharing of data can employ multi-party 
data encryption for added security49. More straight-
forward approaches involve bringing together a com-
mon, limited depth of data from many sites to provide 
a single, comprehensive search, access and analysis 
environment. Such projects are urgently needed as a 
better alternative to the use of generic Internet search 
engines, such as Google or Google Science, for access-
ing specific genotype–phenotype data subsets. Several 
efforts in this direction have been launched, not least 
SNPedia50, MalaCards51, WAVe52, Café Variome Central, 
Kaviar53, the European Variation Archive and the Exome 
Aggregation Consortium.

A focus on data discovery. A novel strategy for making 
databases more useful changes the traditional paradigm 
that data provision automatically follows from a success-
ful search of a database by an approved user. In other 
words, searching through a database becomes a goal in 
and of itself, enabling the existence of data of interest to 
be discovered, irrespective of whether or how these data 
might subsequently be accessed.

Steadily, a comprehensive genotype–phenotype 
‘data discovery layer’ is beginning to emerge, in which 
the location of all relevant data is established using one 
of various portals. This process could become highly 

automated, particularly if consent agreements can be 
based on more regularized clauses (including some 
that give explicit approval for data discovery as a par-
ticular form of data sharing), and then be represented 
as computer-readable data-use metadata to facilitate 
interactions between the computer systems of discov-
ery users and discovery providers. Instead of returning 
data after a discovery search, a system might instead 
employ alternative data representation options, such as 
those mentioned above. As a result, immense combined 
datasets from many databases (even sensitive con-
tent) could be immediately examined for informative  
signal patterns.

Various different data discovery approaches are 
currently being explored (FIG. 3). Examples include the 
following: the search step itself can be enhanced with, 
or replaced by, visual modes of data interrogation (for 
example, via genotype–phenotype relationships marked 
as icons on a genome browser track); the content being 
searched could be a safer derivative of the data, such as 
descriptions of the data resource (catalogue approaches), 
study metadata or aggregated data (pre-prepared or gen-
erated dynamically according to the search parameters), 
rather than the data itself; and various options could be 
provided after a successful search, such as provision of 
metadata or data only in summary or graphical form, 
facilitation of data request procedures, or providing  
contact details of the data owners.
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Figure 2 | Modes of data provision. In addition to the sharing of data to 
maximize benefits, other approaches can be followed in parallel, or instead, 
as and when suitable. a | For instance, other aspects or derivatives of the 
data, such as metadata, graphical representations or aggregates, which may 
be less sensitive, can be shared. b | Additional approaches include data 
encryption to further enhance data protection, and remote data querying, 

whereby the data are not transferred to the user (although may be pooled 
at a trusted broker). c | Data discovery spans a range of options that 
complement data sharing, ranging from completely risk-free querying of 
safe data components leading to simple confirmation that data of interest 
exist, through to enabling full datasets to be queried and some data 
elements to then be provided (which in extremis is full data sharing).
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International Rare Diseases 
Research Consortium
(IRDiRC). This consortium 
comprises rare disease 
researchers and funding 
organizations and promotes 
the goal of developing 200 
new therapies for rare diseases 
and a means to diagnose  
most rare diseases by the  
year 2020.

Global Alliance for 
Genomics and Health
(GA4GH). This alliance 
comprises more than 200 
institutions working in health 
care, research, disease 
advocacy, life science and 
information technology with 
the goal of creating a common 
framework of harmonized 
approaches to enable the 
responsible, voluntary, and 
secure sharing of genomic  
and clinical data.

Human Variome Project
An umbrella organization that 
intends to help coordinate 
efforts to integrate the 
collection, curation, 
interpretation and sharing of 
information on variation in the 
human genome into routine 
clinical practice and research.

Genotype–phenotype data discovery systems to 
date are most apparent in the biobanking world, where 
catalogues are springing up frequently and progres-
sively being unified, as well as other efforts that facili-
tate searching of aggregate data via visual displays (for 
example, GWAS Central47) or via metadata (for example, 
the European Variation Archive42) followed by provid-
ing details on where or how the primary data can be 
requested. More recently, the idea of enabling discovery 
on primary data has been promoted in initiatives such 
as the following: MatchMaker Exchange54, an initiative 
led by the International Rare Diseases Research Consortium 
(IRDiRC)55 and Global Alliance for Genomics and Health 
(GA4GH)56 to discover matched pairs of patients with 
rare diseases based on similar genotypes and pheno-
types, initially using public domain data but eventu-
ally via sensitive information that cannot be openly 

exposed on the Internet; GeneYenta57, which finds 
similar patients with rare diseases via phenotype level 
matching; Cafe Variome58, which discovers variant and 
phenotype data in non-public diagnostic and research 
laboratory networks; and the Beacon project, which dis-
covers the existence of specific genetic variant records in 
diverse sources. Additionally, data discovery concepts 
are spreading to other areas, such as public health and 
epidemiology59 and even as the basis for a UK-wide dis-
covery catalogue of research data from higher education 
institutes and data centres60.

One final notable consequence of data discovery 
is that it enables those that generate and/or own data, 
which is typically held within individual level databases, 
to maximally expose this information for discovery 
while keeping far greater control over how and when 
it is used than that offered by more conventional data 
search and access approaches (such as having a ‘terms of 
use’ statement on an open access website). This option 
is particularly important for data custodians, who may 
be responsible for ensuring that data are used appropri-
ately or stand to benefit if data are used by others (via, 
for example, collaboration, grants and recognition). 
Given that much data might otherwise remain hidden, 
the emergence of data discovery technologies is likely 
to increase data visibility overall, leading to more and 
better collaborative uses of data. Sometimes, however, 
this approach might limit data sharing, if particularly 
cautious data custodians elect to place only data discov-
ery interfaces rather than data-sharing options on top 
of their databases.

Emerging community efforts
In the 1990s, funding or recognition for those involved 
in generating, managing and/or contributing to geno-
type–phenotype databases was limited; however, pro-
gressively, as NGS took hold in the first decade of the 
new millennium, more resources were allocated to data 
management. In recent years the field has truly blos-
somed. Large-scale studies are generating genotype and 
phenotype data on substantial numbers of individuals, 
data collection efforts have been ramped up, with data-
base creators sourcing literature, clinical and research 
datasets, and international coordination and standardi-
zation work is taking place. Even just considering rare 
diseases, the list of community initiatives is long. For 
example, two global consortia (IRDiRC55 represent-
ing and assisting funders, and GA4GH56 developing 
precompetitive standards across this field and others) 
are building on the work of the Human Variome Project61. 
Moreover, the ClinGen62 network of many co-funded 
North American laboratories is tackling issues covered 
in this Review while shepherding data into the ClinVar63 
database. In another example, the Canadian Forge/
Care4Rare64 programme and the DECIPHER38 project  
(via the PhenomeCentral65 and DECIPHER databases, 
respectively) are gathering data about many patient 
cases to help with diagnosis (a mission now bolstered 
by Genomics England targeting 100,000 patients with 
rare diseases or cancer). Simultaneously, many and 
various consortia involving research and health care 

Nature Reviews | Genetics

Sp
ec

tr
um

 o
f d

at
a 

ca
te

go
ri

es

D
at

a 
sh

ar
in

g

D
at

a 
di

sc
ov

er
y

Metadata

Aggregate data

Safe data

Sensitive data

Descriptive list

G
ra

ph
ic

al
 re

pr
es

en
ta

ti
on

s

Figure 3 | Data sharing and data discovery. A database 
may contain a continuum of types of information, as 
illustrated. Most focus is usually given to the primary data, 
which may in part or in whole be sensitive in nature (such  
as identifiable sensitive data (red oval)) or content that is 
generally safe to further distribute (orange oval). But these 
data can easily be converted to other forms that may often 
be more convenient to consume, be even safer to share and 
can potentially better portray the knowledge in the data. 
This type of data includes summary statistics (aggregate 
data (green oval)) or graphical representations (yellow 
oval). Passing any of these categories of data on to others is 
what one normally means by the term ‘data sharing’. With 
the possible exception of sensitive data in some settings, 
data discovery approaches could also make good use of 
these same categories of data. Such an approach would 
enhance the scope of data discovery, which has more 
typically concentrated on aggregate data, and especially 
metadata (light blue oval) and resource descriptions 
(purple oval). Given this overlap between the concepts of 
data discovery and data sharing, and the underlying data 
types they can use, interfaces, functions and procedures 
should therefore be devised that synergistically facilitate 
both of these complementary approaches to the 
dissemination and exploitation of information.
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Stakeholder
In the present context, a 
person or organization with  
an interest or role in medical 
databases, including patients 
and families, physicians, 
researchers, public and  
private research institutions, 
and funding agencies.

professionals are running projects to discover and 
characterize causative variations and genes in specific 
classes of rare diseases; such projects are being aided  
in the computational aspects of this task by groups such 
as the European RD-Connect project66.

Previously, the field was overwhelmingly character-
ized by ‘data silos’, meaning that databases were isolated 
and did not share information on variants or variant 
interpretations. Indeed, the business model of com-
mercial genetic testing entities still commonly involves 
proprietary and unshared data. For example, Myriad 
Genetics had a long-term monopoly on BRCA1 and 
BRCA2 genetic testing, and thus accrued large amounts 
of data on variants in the BRCA genes, giving the com-
pany a competitive advantage in the evaluation of rare 
BRCA1 and BRCA2 variants for which the medical sig-
nificance has not been documented in the medical litera-
ture or public databases67. However, the human genetics 
community is rapidly shifting to a new paradigm of 
publicly sharing variant and variant interpretation data, 

as exemplified in projects such as ClinGen62 and the 
GA4GH BRCA Challenge. Moreover, commercial data-
bases are increasingly responding to customers’ wishes 
to share data by allowing direct data deposition to public 
databases68.

Beyond rare diseases, there are too many large com-
munity and consortium programmes available to list 
them comprehensively in this Review, but notable for 
their ambitious size and success to date are the global 
International Cancer Genome Consortium69 (ICGC), 
whose aim is the characterization of germline and 
somatic variations in cancer, and the GERA70 study, 
which explores adult health and ageing.

Strikingly, given the mixed interests of the range of 
participants in today’s large programmes, it is becoming 
increasing difficult to categorize any one stakeholder as 
being from the research community, the health care sec-
tor, a commercial entity, a charity, an organized patient 
group or the general public. To help with these new 
constellations and interactions, there have been calls 
for a stakeholders’ charter to reassure and set expecta-
tions, with at least two frameworks for this now cre-
ated: the GA4GH framework71 and the RD-Connect 
charter72. It is also increasingly difficult to keep track 
of who is engaged in which initiatives, or which tools, 
resources and skills are available from which sources. 
As such, there is a need for one or more resource dis-
covery catalogues, which are currently being developed; 
for example, by IRDiRC, RD-Connect66, Orphanet73 
and GA4GH56.

Future perspective
The field of genotype–phenotype collation is matur-
ing rapidly via dynamic interactions between many 
interested parties combined with innovation, testing 
and dissemination of solutions. With such productive, 
natural evolution taking place, it is difficult to identify 
major deficiencies that are not already being tackled. 
Nevertheless, the community is not served well by hav-
ing too many disconnected efforts addressing current 
issues, nor by having top-down imposition of concepts 
devised without input from those actually building and 
using the databases. The larger initiatives now under 
way (such as GA4GH56) comprise diverse groups that 
are working together to devise standards guided by 
a deep understanding of the problem domain, organ-
ized and disseminated professionally, with a very open, 
inclusive and consultative approach. Several particularly 
important areas of unmet need have been identified via 
such community discussions, as elaborated below and 
illustrated in FIG. 4.

Metadata. Substantial progress could be made if the 
database community could agree as to what minimum 
amount of data (for example, pathogenic DNA variants 
and the main associated phenotypes) should be made 
available by publicly funded research projects or upon 
journal publication. Once made available, data would 
be immensely more valuable if accompanied by infor-
mation that contextualizes the data. Therefore, it would 
be good to emphasize what depth and types of metadata 

Figure 4 | Data handling in genotype–phenotype databases. Ongoing progress in 
the number, technical sophistication and inter-connectedness of genotype–phenotype 
databases is opening the way to increasingly effective and complex ways of managing 
and exploiting the data held within these depositories. Data production and analysis  
in research and health care settings is becoming faster and more elaborate, which 
demands ever better ways to curate (organize, describe, annotate, quality check and 
deposit) the resulting information within source databases. These data and results, 
along with associated metadata and governance information, then need to be made 
available for discovery, access and use by others over the Internet. Such uses will often 
involve reorganizing and federating data from a number of resources via reformatting, 
aggregation and merging with other content within integration databases. Ultimately, 
this process produces improved scientific knowledge that enables predictions to be 
made and hence utility to be derived, and this is best orchestrated and disseminated 
by central databases interested in translational research and/or clinical diagnostics. 
Making this complex data flow work well requires the efforts of many computer 
technologists, information curators and data scientists, the contributions of whom 
need to be consistently recorded, assessed and rewarded by approaches that go 
beyond the traditional measures of publication impact factor and H-scores. These 
various aspects of local through to international data management contribute to the 
maximization of data discovery and sharing activities, but they are not sufficient. 
Various additional elements need to be devised and improved, as discussed in the main 
text. APIs, application programming interfaces.
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Phenotype term 
cross-mapping
A computational link between 
equivalent or related terms  
in two or more different 
phenotype ontologies.  
For instance, the Medical 
Dictionary for Regulatory 
Activities (MedDRA) term 
Platyspondylia (10068629)  
is mapped to the Human 
Phenotype Ontology term 
Platyspondyly (HP:0000926).

would be needed to ideally cover all aspects of the geno-
type and phenotype data provenance, governance, qual-
ity, ownership, consent, technical backdrop and purpose. 
This emphasis requires a standard structure for meta-
data, a minimal set of required fields and systems for 
metadata production and sharing.

Data formatting and annotation. As more heteroge-
neous data are exchanged, it will become essential to 
have reliable and accurate tools for data conversion and 
annotation support, including format inter-conversion, 
sequence annotation and phenotype term cross-mapping.

Data discovery. Widespread efforts to promote respon-
sible data sharing are increasingly being enhanced by a 
focus on data discovery. The latter needs to be empha-
sized further so that a comprehensive and federated dis-
covery ‘ecosystem’ emerges. This ecosystem needs to be 
generated in such a way that it is part and parcel of global 
infrastructures for data sharing.

Consent agreements. The diversity in formats and 
many other practical issues make data sharing dif-
ficult. For instance, consent agreements can be so 
diverse that not all samples in a database or biobank 
are consented for a certain type of study. A core set of 
standardized consent clauses relating to sharing and 
discovery would go a long way towards maximizing 
our ability to aggregate data or samples from multiple 
sources for integrated studies.

Data analysis and reporting. Similarly, standards for 
analysing and reporting data quality are essential, cover-
ing items such as veracity, benchmarking, comprehen-
siveness, curation processes, depth of clinical data, and 
coverage of published and unpublished disease-causing  
variants.

Identifiers. There is an urgent need for globally 
accepted identifiers for patients (who may be involved 
in multiple studies), individual records (as these may 

Box 1 | Ontologies and nomenclature

When managing and sharing genotype–phenotype data with the goal of having them used effectively, it is important 
that these data be composed from sufficiently precise words used in the correct way. As such, many groups are 
working on ontologies and nomenclature standards, the widespread use of which needs to be encouraged. For 
instance, a specific variant in the prothrombin gene associated with hypercoagulability is variously called the 
‘prothrombin 20210 mutation’, the ‘prothrombin variant’, ‘prothrombin G20210A’, and many other names75. Although 
such designations are recognized by specialists, they impede computational data consumption and make it difficult 
for non-specialists to interpret the variant. These issues motivated work that culminated in the Human Genome 
Variation Society (HGVS) standards for sequence variation nomenclature76–78 (see Further information), along with 
computational quality control of variation nomenclature using tools such as Mutalyzer79,80 and open-source code 
libraries81. Many other standards are equally gaining importance as genomic medicine moves from single genes 
towards panels, exomes and genomes. These standards include file formats for exchanging low-level next-generation 
sequencing (NGS) data as FASTQ82 or SAM/BAM83 files, the Variant Call Format84 (VCF), which is nearly universally used 
for exchanging variants revealed by NGS, and the Locus Reference Genomic standard sequences for gene variant 
reporting, which provides a unique and stable single file reference DNA sequence along with all relevant transcript 
and protein sequences needed for describing gene variants15,16. Additional standards have been developed for 
reporting variants with metadata (for example, VarioML)85 as well as for describing variation effects and mechanisms 
(for example, VariO)86.

Particular challenges emerge in the case of phenotype data, as such data spans an almost infinite spectrum of 
possible observations about an individual. Describing, collating and computing on this semi-subjective data 
continuum are therefore highly dependent on the existence and use of good ontology standards, especially when 
interpreting genome-wide screening data35. Deep phenotyping can be defined as the precise and comprehensive 
analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and 
described. Ontologies provide not only standard terminologies for diseases87 and phenotypic features74,88 but also 
come with supporting computational tools for deep phenotyping that allow sophisticated search and analysis 
routines. For instance, the Human Phenotype Ontology (HPO) is used by many groups to record and analyse the 
phenotypic features of patients being investigated by genome screening methodologies, including the Sanger 
Institute’s DECIPHER and Deciphering Developmental Disorders projects38,89, the rare disease section of the UK 
100,000 Genomes project, and the Undiagnosed Diseases Program of the National Institutes for Health. Several groups 
are using HPO terms to enable phenotype-driven analysis of exomes90–94. Although numerous individual projects in 
oncology and complex disease follow deep-phenotyping approaches, it is still relatively common to assign individual 
patients to broad overall categories for clinical studies. For instance, staging is commonly used in oncology to  
classify patients into a small number of categories based primarily on the extent of the original tumour and the 
presence and distribution of metastases. Although this approach is of great utility for clinical management, similarly 
staged patients often have varied clinical outcomes, suggesting the existence of a spectrum of disease states that are 
not optimally captured by current staging systems. Similar remarks apply to many complex diseases. For example, 
current psychiatric diagnostic classifications group together patients that present with a heterogeneous range of 
phenotypes that likely result from heterogeneous aetiologies95. Substantial efforts will be required to develop 
computational resources, including phenotype ontologies, to adequately capture phenotypes and enable the full 
interpretation of the clinical consequences of genetic variation that may lead to precision medicine-based 
stratification and clinical management of disease.
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ORCID
ORCID provides a  
persistent digital identifier  
(for example, orcid.org/ 
0000-0002-0736-9199) for 
each researcher that can be 
used to streamline workflows 
such as manuscript and  
grant submission and to 
unambiguously identify 
researchers in databases.

APIs
(Application programming 
interfaces). A specification of a 
software component in terms 
of functionalities, formats and 
data types. In the current 
context, an API is a framework 
that allows exchange and 
processing of data and 
contents between different 
websites and databases.

Ontologies
Ontologies are computational 
resources that combine 
catalogues of the relevant 
entities of a domain  
(a conceptualization)  
with a description of the 
interrelationships among  
those entities (a specification).
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